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Large Numbers and the Time Variation of
Physical Constants

B. G. Sidharth1
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We consider a cosmological model consistent with observation which not only
explains the well-known large-number coincidences, but also deduces the values
of the mass, radius, and age of the universe, the Hubble constant and the
cosmological constant, a relation between the pion mass and the Hubble constant
known so far only as a mysterious empirical coincidence, and other features.
This model predicts an ever-expanding universe, as indeed latest astrophysical
data indicate.

1. INTRODUCTION

Dirac’ s Large Number Hypothesis (LNH) has been much written about
(Dirac, 1938; Barrow and Tipler, 1986; Weinberg, 1972; Rees et al., 1974;

Berman, 1992, 1996; Berman and Gomide, 1994; Beesham, 1994a,b). This

is based on apparently mysterious ratios of certain physical constants which

coincide or show a relationship. Let us start with

N1 5
e 2

Gm2 ’ 1040 (1)

where m is the pion mass, the pion being a typical elementary particle, this

being the ratio of the electromagnetic and gravitational forces, and

N2 5
cT

l
’ 1040 (2)

where T is the age of the universe and l the pion Compton wavelength.
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In this light, the LNH can be stated as follows (Beesham, 1994a): ª Any

two of the very large dimensionless numbers occuring in nature are connected

by a simple mathematical relation, in which the coefficients are of the order
of magnitude unity.º

An application of this to (1) and (2) means that their equality is not

accidental, but rather leads immediately to Dirac’ s well-known relation,

G } T 2 1 (3)

Dirac’ s approach further leads to

R } T 1/3 (4)

which appears to be inconsistent (Weinberg, 1972; Ma, 1995).
Another ª accidentalº relation is

m ’ 1 "
2H

Gc 2
1/3

(5)

As observed by Weinberg (1972), this is in a different category and is

unexplained: it relates a single cosmological parameter H to constants

from microphysics.

In the spirit of LNH, one could also deduce that (Berman, 1996)

r } T 2 1 (6)

and

L } T 2 2 (7)

where r is the average density of the universe and L is the cosmological

constant.

It may be mentioned that attempts to generalize or modify the LNH

have been made (e.g., Ma, 1995; Carvalho, 1995), but without gaining much
further insight.

2. FLUCTUATIONS

We now deduce (3) and (5)±(7) from an alternative standpoint. Moreover

in place of the troublesome relation (4), we will get a consistent equation.

Our starting point is the zero-point field (ZPF). According to QFT, this field

is secondary, while according to stochastic electrodynamics (SED), this field
is primary.

We observe that the ZPF leads to divergences in QFT (Feynman and

Hibbs, 1965) if no large-frequency cutoff is arbitrarily prescribed, e.g., the

Compton wavelength. On the contrary, we argue that it is these fluctuations
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within the Compton wavelength and in time intervals t , " /mc2 which create

the particles. Thus, choosing the pion again as a typical particle, we get

(Feynman and Hibbs, 1965; Sidharth, 1997a)

(energy density of ZPF)Xl3 5 mc2 (8)

Further, as there are N , 1080 such particles in the universe, we get,

Nm 5 M (9)

where M is the mass of the universe.
In the following we will use N as the sole cosmological parameter.

Equating the gravitational potential energy of the pion in a three-dimen-

sional isotropic sphere of pions of radius R, the radius of the universe, with

the rest energy of the pion, we can deduce the well-known relation

R 5
GM

c 2 (10)

where M can be obtained from (9).

We now use the fact that the fluctuation in the particle number is of the

order ! N (Hayakawa, 1965; Huang, 1975; Sidharth, 1997b), while a typical

time interval for the fluctuations is , " /mc2 as seen above (that is, particles
induce more particles by fluctuations). This leads to the relation via dN/dt
5 ! N/ t (Sidharth, 1997a)

T 5
"

mc2 ! N (11)

where T is the age of the universe, and, using (10),

dR

dt
’ HR (12)

while from (12), we get the cosmological constant as

L ’ H 2 (13)

where H in (12) can be identified with the Hubble constant, and from the

above can be seen to be given by

H 5
Gm3c

" 2 (14)

Equations (10) and (11) show that in this formulation, the correct radius and

age of the universe can be deduced, given N as the sole cosmological or

large-scale parameter. Equation (13) for L is consistent and exactly agrees
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with an upper limit deduced for it (Misner et al., 1973). Equation (14) is

identical to equation (5).

In other words, equation (5) is no longer a mysterious coincidence, but
rather a consequence.

To proceed, we observe that the fluctuation of , ! N (due to the ZPF)

leads to the empirically well known and apparently mysterious relation (1)

(Sidharth, 1997a; Hayakawa, 1965) with N1 5 ! N, whence we get

R 5 ! Nl (15)

If we combine (15) and (10), we get

Gm

lc2 5
1

! N
(16)

If we combine (16) and (11), we get Dirac’ s original equation (3). It must

be mentioned that, as argued by Dirac (cf. Melnikov, 1994) we treat G as

the variable, rather than the quantities m, l, c, and " (which we will call
microphysical constants) because of their central role in atomic (and sub-

atomic) physics.

Further, using (16) in (1), with N1 5 ! N, as pointed out before (15),

we can see that the charge e also is independant of time or N. So e also must

be added to the list of microphysical constants.
Next, if we use G from (16) in (14), we can see that

H 5
c

l

1

! N
(17)

Thus, apart from the fact that H has the same inverse time dependance on
T as G, (17) shows that, given the microphysical constants and N, we can

deduce the Hubble constant also, as from (14).

Use of (13) in (17) now gives equation (7).

Using (9) and (15), we can now deduce that

r ’
m

l 3

1

! N
(18)

Equation (18) gives equation (6).

Next (15) and (11) give

R 5 cT (19)

Equation (19), which is correct, differs from the troublesome Dirac depen-

dence (4).

Finally, we observe that using M, G, and H from the above, we get
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M 5
c 3

GH
(20)

a relation which is not only correct, but is required in the Friedman model

of the expanding universe [and the steady state model also (Beesham, 1994b;

Ma, 1995)]. This is entirely consistent, as we are dealing with an isotropic
matter-dominated universe.

We finally make four comments:

First, in our model of particle production through fluctuations of the

ZPF, equation (11) actually provides an arrow of time, at least at the cosmolog-

ical scale, in terms of the particle number N.
Second, in the spirit of the uniform cosmic dust approximation, the

newly created particles are uniformly spread out. In practice, as the number

of the fluctuationally created particles is proportional to the square root of

the particles already present, more of the new particles are created, for

example near galactic centers, than in empty voids, reminiscent of the jets

which are observed.
Third, the reason why the Compton wavelength emerges as a fundamen-

tal length has been seen in previous communications (Sidharth, 1997a±c).

Finally, in this model, while the mass of the universe increases as N or

T 2, the volume increases as T 3, so that the mean density decreases as T 2 1

[equation (18)], unlike in the steady-state cosmology.

3. CONCLUSION

Dirac’ s LNH equates ad hoc, large matching numbers. The actual ratio-
nale for this is unexplained and mysterious. In the present model, particles

are created by fluctuations of the ZPF. Not only does this model give, in

terms of a single cosmological parameter N and microphysical constants e,
m, l, c, and " , the observed values of the mass, radius, and age of the universe,

but also the values of the Hubble constant and cosmological constant and

also the equality of the apparently matching large numbers, the mysterious
equation (14) and the relation (20). Furthermore, the time variation of the

cosmological parameters including the total particle number [equation (11)]

is also a consequence of this model.

It may be pointed out that the above model answers two vexing cosmo-

logical problems. The first is the fact that some recent ground-based and

Hubble Space Telescopic studies indicate that the age of the big bang universe
is less than the age of certain stars (Pierece et al., 1994; Freedman et al.,
1994). The second is the fact that recent studies indicate (Branch, 1998;

Perlmutter, et al., 1998) that the density of the universe is less than the

critical density, so that the universe would continue to expand forever and
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consequently one would require the cosmological constant, both of which

are in agreement with the above model.
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